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In this paper, we prove the following improved Vitali–Hahn–Saks measure convergence
theorem: Let (L , 0, 1) be a Boolean algebra with the sequential completeness property,
(G, τ ) be an Abelian topological group, ν be a nonnegative finitely additive measure
defined on L , {µn : n ∈ N} be a sequence of finitely additive s-bounded G-valued
measures defined on L , too. If for each a ∈ L , {µn(a)}n∈N is a τ -convergent sequence,
for each n ∈ N, when {ν(aα)}α∈� convergent to 0, {µn(aα)}α∈� is τ -convergent, then
when {ν(aα)}α∈� convergent to 0, {µn(aα)}α∈� are τ -convergent uniformly with respect
to n ∈ N.
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Let (L , 0, 1) be a Boolean algebra, (G, τ ) be an Abelian topological group,
a mapping µ : L → G is said to be a finitely additive measure if a, b ∈ L with
a ∧ b = 0, then µ(a ∨ b) = µ(a) + µ(b). The measure µ is said to be s-bounded
if for each disjoint sequence {an} of (L , 0, 1), {µ(an)} is τ -convergent to 0. Let
{µn : n ∈ N} be a sequence of finitely additive s-bounded measures, if for each
disjoint sequence {ak} of (L , 0, 1), {µn(ak)} are τ -convergent to 0 uniformly with
respect to n ∈ N, then {µn : n ∈ N} is said to be uniformly s-bounded.

Brooks and Jewett (1970) proved the following famous Vitali–Hahn–Saks
measure convergence theorem:

Theorem 1′. Let A be a σ -algebra, (X, ||.||) be a Banach space, ν be a nonneg-
ative finitely additive measure defined on A, {µn : n ∈ N} be a sequence of finitely
additive s-bounded X -valued measures defined on A, too. If for each A ∈ A,
{µn(A)}n∈N is a ||.||-convergent sequence, for each n ∈ N, limν(A)→0 µn(A) = 0,
then limν(A)→0 µn(A) = 0 uniformly with respect to n ∈ N.
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That is, if for each n ∈ N, µn is absolutely continuous with respect to ν, then
{µn}n∈N are absolutely continuous with respect to ν uniformly for n ∈ N.

Vitali–Hahn–Saks theorem has a series of important applications in measure
theory and quantum logics (De Simone, 2000).

Now, we are interested in the following problem: If for each n ∈ N, when
{ν(Aα)}α∈� convergent to 0, {µn(aα)}α∈� is ||.||-convergent to en , then when
{ν(aα)}α∈� convergent to 0, {µn(aα)}α∈� whether are τ -convergent to en uniformly
with respect to n ∈ N? That is, whether we can improve the absolute continuity of
Vitali–Hahn–Saks theorem?

In this paper, by considering L × L and using the proof methods of Brooks–
Jewett (Brooks and Jewett, 1970), we show that the answer is true.

Our main result is

Theorem 1. Let (L , 0, 1) be a Boolean algebra with the sequential complete-
ness property, (G, τ ) be an Abelian topological group, ν be a nonnegative finitely
additive measure defined on L , {µn : n ∈ N} be a sequence of finitely additive
s-bounded G-valued measures defined on L , too. If for each a ∈ L , {µn(a)}n∈N

is a τ -convergent sequence, for each n ∈ N, when {ν(aα)}α∈� convergent to 0,
{µn(aα)}α∈� is τ -convergent to en , then when {ν(aα)}α∈� convergent to 0,
{µn(aα)}α∈� are τ -convergent to en uniformly with respect to n ∈ N.

Proof: If the conclusion is not true, there exists ε > 0 and sequences {nk}, {δk},
{ak} and {bk}, and a τ -continuous group quasi-norm P such that P(µnk+1 (ak+1) −
µnk+1 (bk+1)) > ε, ν(ak+1) < δk+1, ν(bk+1) < δk+1, and ν(a) < δk+1, ν(b) < δk+1

implies that P(µni (a) − µni (b)) < ε
2k+3 for i ≤ k. Without loss of generality, we

may assume that ni = i . So

P(µk+1(ak+1) − µk+1(bk+1)) > ε, (1)

P(µ j (a) − µ j (b)) <
ε

2k+3
, j ≤ k, a ≤ ak+1, b ≤ bk+1. (2)

Consider L × L = {(c, d) : c ∈ L , d ∈ L}. Let c1 = a2, d1 = b2 and i1 = 2.
If there exists an i2 > 2 such that P(µi2 (c1 ∧ ai2 ) − µi2 (d1 ∧ bi2 )) > ε

4 , then let
(c2, d2) = (c1 ∧ a′

i2
, d1 ∧ b′

i2
). If (c1, d1), . . . , (ck , dk) and i1, . . . , ik have been cho-

sen and that there exists an ik+1 > ik such that P(µik+1 (ck ∧ aik+1 ) − µik+1 (dk ∧
bik+1 )) > ε

4 , then let (ck+1, dk+1) = (ck ∧ a′
ik+1

, dk ∧ b′
ik+1

). Thus, we have

ck+1 ≤ ck , dk+1 ≤ dk , ck ∧ c′
k+1 = ck ∧ aik+1 , dk ∧ d ′

k+1 = dk ∧ bik+1 . (3)

It follows from (2) and (3) that

P(µik+1 (ck ∧ c′
k+1) − µik+1 (dk ∧ d ′

k+1)) >
ε

4
. (4)

P(µik (ck ∧ c′
k+1) − µik (dk ∧ d ′

k+1)) <
ε

2k+3
. (5)
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Now, we show that there exists a (ck0 , dk0 ) ∈ L × L and an ik0 such that for
all j > ik0 , P(µ j (ck0 ∧ a j ) − µ j (dk0 ∧ b j )) < ε

4 .
In fact, if not, we can obtain disjoint sequence {ck ∧ c′

k+1} and disjoint se-
quence {dk ∧ d ′

k+1} in L which satisfy (4) and (5) for all k ∈ N. Thus, we have

P((µik+1 − µik )(ck ∧ c′
k+1) − (µik+1 − µik )(dk ∧ d ′

k+1)) >
ε

8
, k = 1, 2, . . . .

This contradicts the Theorem 1 of Junde and Zhihao (2003). Hence, there
exists a (ck0 , dk0 ) ∈ L × L and an ik0 such that for all j > ik0 , P(µ j (ck0 ∧ a j ) −
µ j (dk0 ∧ b j )) < ε

4 .

Let p1 = ik0 , (h1, g1) = (ck0 , dk0 ), µ
(1)
i = µp1+i , (a(1)

i , b(1)
i ) = (ap1+i ∧ h′

1,
bp1+i ∧ g′

1). It follows from (1), (2), and (5) easily that

P(µ1(h1) − µ1(g1)) <
ε

21+3
= ε

16
,

P(µ2(h1) − µ2(g1)) > ε − ε

4
.

So

P((µ2 − µ1)(h1) − (µ2 − µ1)(g1)) > ε − ε

4
− ε

16
,

P
(
µ

(1)
i (a(1)

i

) − µ
(1)
i

(
b(1)

i )
)

> ε − ε

4
,

P
(
µ

(1)
j (a) − µ

(1)
j (b)

)
<

ε

2i+3
, a ≤ a(1)

i , b ≤ b(1)
i , j < i.

Let (c(1)
1 , d (1)

1 ) = (a(1)
1 , b(1)

1 ). Similarly, we can obtain a (c(1)
k1

, d (1)
k1

) and an ik1

such that for all j > ik1 , P(µ(1)
j (c(1)

k1
∧ a(1)

j ) − µ
(1)
j (d (1)

k1
∧ b(1)

j )) < ε
8 .

Let p2 = ik1 , (h2, g2) = (c(1)
k1

, d (1)
k1

), µ
(2)
i = µ

(1)
p2+i , (a(2)

i , b(2)
i ) = (a(1)

p2+i ∧ h′
2,

b(1)
p2+i ∧ g′

2). Then h1 ∧ h2 = 0, g1 ∧ g2 = 0, and P(µ2(h2) − µ2(g2)) < ε
32 ,

P(µ(1)
1 (h2) − µ

(1)
1 (g2)) > ε − ε

4 − ε
8 . So,

P
(
(µ(1)

1 − µ2
)
(h2) − (

µ
(1)
1 − µ2

)
(g2)) > ε − ε

4
− ε

8
− ε

32
,

P
(
µ

(2)
i

(
a(2)

i

) − µ
(2)
i

(
b(2)

i

))
> ε − ε

4
− ε

8
,

P
(
µ

(2)
j (a) − µ

(2)
j (b)

)
<

ε

2i+4
, a ≤ a(2)

i , b ≤ b(2)
i , j < i.

Inductively, we can obtain disjoint sequence {hk} and disjoint sequence {gk}
of L , and a sequence of {µ(k)

1 } such that P((µ(k+1)
1 − µ

(k)
1 )(hk+2) − (µ(k+1)

1 −
µ

(k)
1 )(gk+2)) > ε − ε

4 − ε
8 − · · · − ε

2k+1 − ε
32 > ε

16 for all k ∈ N.
This contradicts Theorem 1 of Junde and Zhihao (2003) again, so the theorem

is proved. �
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